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Abstract

DICOM displays linearly space digital data values over the range of just-noticable differences (JNDs). To increase the number
of JNDs available we must increase the display’s contrast. However, operating over too wide a range may cause human observers
to miss contrast in dark regions due to adaptation to bright areas or, alternatively, miss edges in bright regions due to scattering
in the eye.

Dolby Inc.’s new high dynamic range (HDR) LCD display has a maximum luminance over 2000 cd/m2; bright enough to
produce significant in-eye scatter. The display combines a spatially varying backlight allows a low-resolution 8-bit “backlight
image” with a high-resolution 8-bit LCD panel, approximating a 16-bit greyscale display. Alternatively, by holding the backlight
constant at 800 cd/m2, a standard medical LCD display can be simulated.

We used two-alternative forced choice (2AFC) signal-detection experiments to quantify display quality. We explored whether
the full-power HDR display’s optical characteristics (scattering and low resolution backlight) have a negative effect on signal
detection in medical images compared with standard medical LCDs. We used 8-bit test images derived from high-field MRI data
combined with synthetic targets and synthetic Rician noise.

Initial results suggest that the HDR display allows signal detection comparable to a standard medical LCD.
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Comparing Signal Detection Between Novel
High-Luminance HDR and Standard Medical LCD

Displays

I. INTRODUCTION

GREYSCALE medical image displays rely on the ob-
server’s sensitivity to spatially varying luminance in

order to communicate a 2D array of digital values. Given
an LCD display that can produce a finite set of greyscale
luminance values, the DICOM standard formalizes a function
for selecting the appropriate luminance for each pixel to best
represent some digital value in a medical image [1]. The
core principle behind the choices suggested by the DICOM
standard is that equal differences in digital values should be
represented by equal perceptual differences. Thus, it proposes
units of just-noticeable differences (JNDs) as the perceptual
equivalent of the digital data’s units. A mapping between
luminance and JNDs is established in the DICOM standard
based on previous human experiments. Using this relationship,
we can convert our digital values into luminances by ensuring
that equal steps in the digital domain are mapped to equal steps
in the JND space and determining the relevant luminances
from the desired JND values.

In practice LCD-based displays can achieve a finite range
of luminances. The ratio of the maximum to minimum lumi-
nances is generally referred to as the display’s contrast ratio.
Further they have limited discrete luminance values inside
this range that are available for display. The base-2 logarithm
of the number of discrete luminance settings is called the
display’s greyscale bit depth. The minimum and maximum
brightness provide an upper-limit on the number of JNDs that
a human could perceive on a perfectly controllable display.
The bit depth determines how well we can approximate this
ideal display. Previous work has suggested that, for regular
medical displays with maximum and minimum luminances of
approximately 900 cd/m2 and 1.5 cd/m2 respectively, there
is little value in producing monitors with more then 12-bit
greyscale bit depth [2].

Dolby has demonstrated a new high-dynamic range (HDR)
LCD-based technology that allows displays to have effectively
infinite contrast ratio by having the minimum luminance of
the display become very close to zero. Medical LCD displays
normally use a uniform backlight that provides approximately
equal illumination to the back of the LCD panel at every pixel.
The LCD panel is then used to filter this light. However current
LCD technology cannot block all the light, even when the LCD
is set to full black. Thus, on a normal LCD the minimum
luminance level is some value greater than zero. The new
Dolby display technology uses a spatially varying backlight to
illuminate a standard LCD panel. Because the backlight can
vary spatially, it is possible to turn it off completely in regions

where the image should be black, making for regions with
effectively zero luminance. Furthermore, the Dolby technology
relies on high-power light-emitting diodes (LEDs) for the
backlight, making the maximum luminance of displays in the
thousands of cd/m2.

However, the Dolby HDR LCD also introduces some com-
promises compared to a standard LCD. The spatially varying
backlight system cannot be controlled individually at each
pixel in the image. Instead, a low-resolution array of backlight
LEDs is used and the illumination behind the LCD at any
location is the sum of the contributions from all the LEDs
whose point spread functions (PSFs) extend to that location.
Thus while the backlight LEDs each individually have 8-bits
of luminance depth and the LCD panel also has 8-bits of
greyscale depth, the resulting display does not have 16-bits of
independent greyscale depth at every pixel. Instead, we have an
approximation to a 16-bit display where neighbouring pixels’
luminance values are coarsely correlated.

The low-resolution backlight is partially justified by the
imperfect nature of the human optical system. In particular,
light scattering in the media of the eye causes bright regions to
be blurred [3]. This is commonly observed as a “blooming” or
“halo” effect where a bright region with a sharp edge abutting
a dark region will have a halo that extends over the edge.
In practice, this scattering-induced halo will be larger than
the PSF of the LED, meaning that the approximation artifacts
from the Dolby technology are less than the dominant source
of error in the human eye [4]. However, since this blooming
effect can obscure fine details and edges, it may be that there
is still an effective upper limit on the brightness that is useful
in medical displays.

We were interested in determining whether the artifacts
introduced by the low-resolution Dolby backlight, combined
with the potential effect of scattered light, would impact the
use of these screens in a medical context. To this end, we have
conducted an experiment based on a two-alternative forced-
choice (2AFC) signal known exactly (SKE) signal-detection
task. To control the effects of the varying backlight and
scattered light, we tested the Dolby display in two configu-
rations. In the first, we made full use of the brightness and
spatial variation available from the backlight. In the second
configuration we set the backlight to be spatially uniform
and produce a maximum display luminance of 800 cd/m2;
approximately the same luminance as a high-end medical
display. We then compared task performance between these
two conditions.

In the section II we will describe the process used to produce
our stimulus images, provide a description of the 2AFC task
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that our subjects performed, and provide more details about
the display and how we used it. In section III we present the
results of our experiments, and discuss their implications for
use of the Dolby display. Finally, in section IV we present our
conclusions.

II. METHODS AND MATERIALS

A. Stimulus Images

Our stimulus images were generated using a similar method-
ology to previous work on the evaluation of MRI reconstruc-
tion [5]. Our goal in using anatomical MRI backgrounds was
not to simulate a realistic pathology, but instead to provide a
realistic background that would stimulate the contrast sensi-
tivity of the observer in the same way a real medical image
would. This provides a visual distraction effect similar to that
of real medical images.

We began with several 16-bit magnitude-reconstructed 3D
inversion recovery head MRI volumes of healthy volunteers
acquired on a 3 T Philips Gyroscan Intera scanner. The
volumes were sliced along the three major axes to produce
a corpus of full-head images. From the full-size images,
128×128 pixel images were constructed along the three major
axes by selecting 128× 128 pixel regions randomly from the
full-size images. To verify that our small images contained
anatomy in the central part of the image, we computed the
average intensity in the central 64 × 64 pixel sub image and
ensured it was above a sufficient threshold. Images that were
over the threshold were normalized to the range (0, 1) and
kept as backgrounds.

Our backgrounds were randomly divided into target-present
and target-absent sets. Images in the target-present set were
summed with an anti-aliased circular target signal defined by
the function

S(x) =


b if |x− z|2 ≤ w

b(1− ‖x− z‖ + w) if w < ‖x− z‖ < 1 + w

0 otherwise
(1)

where x is a 2D coordinate in image space, b is the amplitude
of the target signal, z is the index of the image center, ‖·‖ is
the Euclidean norm, and w is the width of the feature. We set
w = 3 which was approximately equivalent to a 6 mm feature
in the anatomy.

To simulate Rician-distributed thermal MRI noise [6] in
our target-present and target-absent images, we produce two
random samples from a Gaussian distribution N (0, σ) for each
pixel in each of our synthetic images. Let B(x) be the intensity
of a given anatomical background image at location x, S(x)
be the intensity of the target signal at location x, and Q1(x)
and Q2(x) be the two samples from the Gaussian distribution
at location x. We can then write the final target-present image
with simulated thermal noise as

I(x) =
[
(B(x) + S(x) + Q1(x))2 + Q2(x)2

]−1/2

, (2)

and target-absent images are simulated with

I(x) =
[
(B(x) + Q1(x))2 + Q2(x)2

]−1/2

. (3)

b = 1
20 , σ = 3

40 b = 1
12 , σ = 3

40

b = 1
12 , σ = 9

200 b = 5
36 , σ = 9

200

Fig. 1. Example of one anatomical background in all four target-present
conditions. The target signal is the small circle visible just under the cortical
folds, in the center of the images.

When adding signals and noise, we subdivided our images
into four conditions representing four different target signal-to-
noise ratios (SNRs). Using the variables specified above, these
four conditions were (b = 1

20 , σ = 3
40 ), (b = 1

12 , σ = 3
40 ),

(b = 1
12 , σ = 9

200 ), and (b = 5
36 , σ = 9

200 ) which give target
SNRs of approximately 2

3 ' 0.667, 10
9 ' 1.111, 50

27 ' 1.852,
250
81 ' 3.086. In practice, because our target was summed

on top of background anatomy, it was usually far brighter
than indicated by these SNR values. However, these values are
indicative of the degree of contrast between the target and the
anatomy it was summed with relative to the simulated thermal
noise. Additionally, it is important to note that there is some
real thermal noise already present in our background images
B(x). However, because of the quality of the scans used, this
noise’s variance is far less than that of our simulated thermal
noise, and thus we do not expect it had any impact on the
final results.

Once the signal and noise was added, the entire image
corpus was normalized so that the darkest pixel over all the
images was set to 0 and the brightest pixel over all the images
was set to 255. Thus, most images spanned some slightly
smaller range of values. We then stored the final images as
8-bit values. An example of one anatomical background in all
four target-present conditions is shown in figure 1

Reducing our data to 8-bit values could be seen as missing
the point of using a high-contrast display. Having increased the
luminance range that the display can provide, we now have
more JNDs available and can thus afford to show more than
8 bits of greyscale information simultaneously. Our reason for
choosing 8-bit information as the final digital output for our
experiment stems from the fact that, at this point, we are
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interested only in testing the effects of the Dolby display’s
optical design and brightness. Thus, by using 8-bit data we
can ensure that our images can be presented without further
data reduction in both of our display conditions, which are
described in a later section.

B. 2AFC Task

Signal-detection tasks have a long history in measuring the
quality of imaging systems, including the evaluation of med-
ical imaging modalities and image reconstruction algorithms
[5], [7]–[9]. Our particular experiment structure – the 2AFC
experiment – has also been used previously in the evaluation
of medical LCD displays [10].

Our seventeen volunteers were all non-radiologists with no
previous medical image reading experience. All subjects had
fully corrected vision and were graduate students or university
graduates. The age range (mid-20s to mid-40s) was well below
the age significance threshold in the CIE General Disability
Glare Equation [3] indicating that the age variation should not
be a significant factor in the quantity of scatter in their eye,
and thus their perception of the “blooming” effect. Similarly,
eye colour of the subjects was not an important factor as the
experiment was setup to have viewing angles smaller than
the CIE threshold of 30 degrees at which eye color becomes
significant [3]. The entire experiment was conducted in a fully
darkened room, with the display being the only source of
illumination. Subjects were seated on-axis both vertically and
horizontally with the display and approximately 3 times the
height of the display away from the screen as this is considered
the optimal distance for HDTV viewing (our prototype screen
was based on a restricted region of an HDTV screen).

The display was shrouded in heavy black cloth to cover
reflected light from the frame and ensure that participants
saw only the portion of the screen containing the interface
and a border of approximately 1 inch of screen around it.
Inside of this region, two images were displayed in a vertical
orientation, with a gap between them in which we displayed
the target feature for the trial. In each trial the two images were
chosen so that one was target-present and the other target-
absent. Subjects were told that, if the target was present in an
image, the circular target would sum with the background to
make the region brighter. They were then directed to compare
both images with the target feature displayed in the center
of the screen and select their best guess for which of the
two images was target-present. To ensure that there was no
confusion about the location of the target, we superimposed
cross hairs on the images. These cross hairs could be toggled
on and off by the users so that visual distraction could be
minimized when desired. The interface is illustrated in figure
2. Since the users were shown both the target and where it
would be located if it were added, this is a 2AFC SKE task.

Users were given 10 minutes of training in the darkened
room in order to allow for eye adaptation to the lighting
conditions. Users were then shown the display configured
either in uniform or spatially varying backlight mode (odd-
numbered subjects saw the spatially varying display first, even-
numbered subjects were initially presented with the uniform

Fig. 2. Example of the 540× 1080 pixel user interface. In this image cross
hairs have been turned on to reduce localization errors. The target feature is
located in the top image in the center of the cross hairs.

display). The subjects were asked to perform the task for 128
image pairs. The display was then toggled into the opposite
mode and the 128 image pairs were repeated. In each of the
two trials the order of the image pairs was randomized for
every subject.

C. Dolby Display

The display we used in our experiment was a prototype
Dolby display that had a portrait-shaped usable region with
a resolution of 540 × 1080 pixels. The display consisted of
an 8-bit color LCD panel backlit by an array of LEDs with
8-bits of luminance control. The LEDs are laid out in a
hexagonal grid such that behind each of the images in the
experimental interface there were approximately 110 LEDs
to provide illumination, with the remainder in the center or
around the periphery of the interface.

Using this setup we can simulate a normal, uniformly
backlit LCD-based display by simply turning all the LEDs
on to the same drive level and using only the LCD panel to
modulate the brightness of the display at each pixel. In this
case contrast is limited to the available contrast of the LCD
panel.

To make full use of the Dolby display, we need to vary
the drive levels of the LEDs as well as the LCD panel to
produce a spatially varying backlight. We have used the in-
house algorithms developed by Dolby to calculate the desired
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Fig. 4. Luminance of the display in uniform (solid) and spatially varying
(dashed) backlight modes for each digital drive level.

LED and LCD drive levels from an 8-bit image. The basic
principle though, is that the LEDs display a low-frequency
image derived from the 8-bit input and the LCD is used to
display a high-frequency correction to the LEDs [11]. This
idea is illustrated in figure 3.

To measure the luminance of the display in each of the
conditions we used a region the size of one of the images used
in our 2AFC task. We recorded the luminance at the center
of the image region as the digital drive level was increased in
steps of 5. The choice of using a region of this size instead
of varying the drive level of the whole screen is based on
the nature of the backlight employed. The spatially varying
backlight system is affected both by a limit on the power the
system can safely draw and the fact that the brightest possible
luminance value the screen can produce results from summing
the overlapping light emissions of neighbouring LEDs. Given
the nature of the system, we felt the most realistic description
of display luminance for our task was to vary an “image” of
the same size as our data from minimum digital drive level to
maximum. The results of these measurements are plotted in
figure 4.

As we can see in figure 4, the maximum luminance of the
display uniform backlight setup was approximately the same
as in a medical-grade LCD display. Luminance varied from
780 cd/m2 to 0.706 cd/m2, giving a contrast ratio of approx-
imately 1100:1. Although the display had luminance properties
similar to a medical grade LCD display, our prototype display
was lacking substantially in resolution. However, given that we
were displaying only 128 × 128-pixel images, the resolution
constraint did not affect our simulation of uniformly backlit
medical LCD display.

In comparison to the uniform condition, the spatially vary-
ing backlight mode allows effectively infinite contrast, with
luminance varying from 0 to a maximum of 2140 cd/m2. In

this respect, the performance of the Dolby display with spa-
tially varying backlight resembles the luminance and contrast
properties associated with film displayed on light boxes.

Despite the similarities between the Dolby display and
film (refer to figure 4) there is a significant deviation from
the performance of film when the Dolby display attempts to
show high-contrast edges. Edges going from full white to full
black in the digital data cannot be physically produced by
the display. To understand this, note that essentially the same
amount of backlight is shone on two neighbouring pixels as the
PSFs of the LEDs are far wider than two pixels. Thus, in order
to go from full white to full black in the display would require
the LCD to block all the light from the backlight. Of course, if
this were feasible there would be no need for spatially varying
backlights in the first place, and so we might suspect that the
Dolby display is not useful for medical images that contain
many edges.

However, as we noted previously, a great deal of scattering
occurs in the eye when observing bright objects [3]. This
scattering causes neighbouring regions to appear brighter than
they actually are, regardless of the light emitted by the display
in the dark regions. This effect is known under many names;
blooming, veiling luminance, and disability glare are the more
common. Based on calculations of this effect, the Dolby
display is setup such that the scattering in the eye will produce
a “halo” around bright regions that is larger than the mismatch
caused by the PSF of the LED backlights [4]. Thus, the
display’s imperfect ability to represent high-contrast edges
can be disregarded as the errors in the display are usually
subsumed by the errors in the observer’s eye.

In fact, we expect that the same scatter effect would occur
for observers of film on light boxes as well. The range of
luminance available on mammography light boxes provides at
approximately four orders of contrast [12], which suggests that
sharp edges on these displays should be equally obscured by
scatter in the eye. However, while these effects have apparently
not been a substantial detriment to film reading, we felt it was
possible that the scattering induced by the prototype Dolby
display would be different and detrimental to signal detection,
necessitating our present evaluation.

Another deviation in our experiments from normal medi-
cal displays was our decision to use the native relationship
between digital drive and luminance, instead of the more
standard DICOM calibration. One reason for this choice is that
it is unclear how a display using the Dolby system can be made
to comply with the DICOM standard, given that the available
range of luminance available at any pixel is dependent on the
luminance of the neighbouring pixels. In fact, this problem
holds for any attempt to calibrate the display. If we used a
transfer function that linearized the measured values when we
used the full-sized square image, we would almost certainly
end up with highly non-linear response in regions of medical
images.

As we were interested mostly in the veiling luminance due
to scatter and the approximations being made by the Dolby
variable backlight system, we felt that the transfer function
was not likely to be a significant contributor to error between
displays as long as it was of a reasonable shape. Ideally we
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Fig. 3. An example of the LED and LCD drive levels calculated for a single square wave. The left column displays the true image (top) and a cross-sectional
plot from the true image (bottom). The middle column provides the same visualizations of the LED image and the right column provides the visualization
of the LCD image. In our experimental pipeline the true square wave would be presented as an 8-bit image. The calculated LED image cannot accurately
represent the edges of the wave due to the PSF of the LEDs, so the difference must be corrected by the LCD.

would pick some calibration standard (e.g., luminance-linear,
DICOM) and ensure both backlight modes were consistently
calibrated. However, since it was unclear how to usefully
calibrate the variable backlight mode, we could not setup such
equivalent environments. Instead, we left the display with its
default transfer function and, having measured the display and
viewed many images on it, were satisfied that it provided a
usable display for our experiments.

III. RESULTS AND DISCUSSION

For any individual subject, we can compute an estimate
of the area under the ROC curve (AUC) for the combined
diagnosis system of subject and display in a given target/noise
power combination by simply calculating the percentage of
correct guesses they made in this configuration [13]. Noting
this connection between percentage correct and AUC, for the
remainder of this paper we will discuss hypothesis tests on
percentage correct values, but note that we could equally claim
to be performing our tests on estimates of AUC.

Using this method, we have plotted the first, second, and
third quartiles of the subjects’ percentage correct guesses in
figure 5. While figure 5 is useful for illustrating the variability
across readers in our experiment, we were most interested in
determining whether the two display systems were equivalent
for our task. In the remainder of this section we present our
analysis of these results using the methods presented by Gallas
et al. [14] to compute the necessary values for paired t-tests
of our hypotheses.

A. Means and Variances of Percentage Correct
As a first step towards this goal we computed the mean

percentage correct for each of the two displays and the mean
difference in percentage correct between the two displays in
each of the four target/noise power conditions. Since our study
uses a fully-crossed design where all readers saw every case,
we can safely compute our average percentage correct across
all readers and cases in a given display and condition as [14]

P̂d,c =
〈
sr,d,c(i)|d, c

〉
, (4)

TABLE I
MEAN PERCENTAGE CORRECT VALUES

Spatially
Varying Uniform Difference

b = 1
20

, σ = 3
40

0.557 0.577 -0.020

b = 1
12

, σ = 3
40

0.621 0.623 -0.002

b = 1
12

, σ = 9
200

0.697 0.744 -0.048

b = 5
36

, σ = 9
200

0.930 0.926 0.004

where sr,d,c(i) is a binary-valued function with 1 for a correct
guess and 0 for an incorrect guess when the rth subject
looked at the ith image selected from the set of images with
target/noise power condition c using display d. We use c(i)
to accentuate the fact that the ith image in one target/noise
power condition is not the same as the ith image in the other
three conditions. Inside of a given condition images are i.i.d.
while between conditions images are merely assumed to be
independent. We use the notation

〈
sr,d,c(i)|d, c

〉
to indicate

that we are taking the mean over i and r with d and c held
fixed.

The mean difference in percentage correct between the two
displays is then very similar

P̂c =
〈
sr,dv,c(i) − sr,du,c(i)|c

〉
, (5)

where dv indicates the spatially varying backlight and du

indicates the uniform backlight, which are treated as constants
and thus not varied in taking the means. The values we
computed for these variables from our experimental data are
shown in table I.

We also need to compute the variances of these values.
The variance of the percentage correct with one display and
condition held constant is given by [14]

Vd,c = k1

〈
s2

r,d,c(i)|d, c
〉

+ k4

〈〈
sr,d,c(i)|r, d, c

〉2
〉

+

k5

〈〈
sr,d,c(i)|d, c, i

〉2
〉

+ k8

〈
sr,d,c(i)|d, c

〉2
, (6)
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Fig. 5. Plot of the first, second, and third quartiles of subject percentage correct in each of the 8 possible conditions (4 combinations of target and noise power,
and two choices of backlight system). The plot is divided vertically into two halves. The left half shows results for the Dolby spatially varying backlight. The
right half shows results for the uniform backlight. Each shape represents the median of the percentage correct in one target/noise power configuration. The
vertical bars extending from the shape represent the first and third quartiles of the percentage correct, over all the subjects.

where we have slightly modified the notation of Gallas et al.
and define

k1 = 1/(NrNi) (7)
k4 = (Ni − 1)/(NrNi) (8)
k5 = (Nr − 1)/(NrNi) (9)
k8 = [(Nr − 1)(Ni − 1)−NrNi] /(NrNi) , (10)

where Nr is the number of subjects and Ni is the number
of images displayed in one of the four target/noise power
conditions. In our data Nr = 17 and Ni = 32. Using
these constants, we can also write the covariance of the two
displays’ percentage correct values in a specific target/noise
power condition as

Vc = k1

〈
(sr,dv,c(i) − sr,du,c(i))2|d, c

〉
+

k4

〈〈
(sr,dv,c(i) − sr,du,c(i))|r, d, c

〉2
〉

+

k5

〈〈
(sr,dv,c(i) − sr,du,c(i))|d, c, i

〉2
〉

+

k8

〈
(sr,dv,c(i) − sr,du,c(i))|d, c

〉2
. (11)

In computing these variance estimates it is important we
use unbiased estimators of the various means. Following the
example of Gallas et al. we compute the estimates as follows
[14] 〈

s2
r,d,c(i)|d, c

〉
=

1
NrNi

Nr∑
r=1

Ni∑
i=1

s2
r,d,c(i) (12)

〈〈
sr,d,c(i)|r, d, c

〉2
〉

=

1
NrNi(Ni − 1)

Nr∑
r=1

Ni∑
i=1

Ni∑
i′ 6=i

sr,d,c(i)sr,d,c(i′) (13)

〈〈
sr,d,c(i)|d, c, i

〉2
〉

=

1
NiNr(Nr − 1)

Nr∑
r=1

Nr∑
r′ 6=r

Ni∑
i=1

sr,d,c(i)sr′,d,c(i) (14)

TABLE II
VARIANCE OF PERCENTAGE CORRECT VALUES

Spatially
Varying Uniform Covariance

b = 1
20

, σ = 3
40

2.14× 10−3 2.32× 10−3 0.056× 10−3

b = 1
12

, σ = 3
40

2.58× 10−3 1.89× 10−3 0.25× 10−3

b = 1
12

, σ = 9
200

2.42× 10−3 2.22× 10−3 0.37× 10−3

b = 5
36

, σ = 9
200

0.39× 10−3 0.50× 10−3 0.18× 10−3

〈
sr,d,c(i)|d, c

〉2 =

1
Nr(Nr − 1)Ni(Ni − 1)

Nr∑
r=1

Ni∑
i=1

Nr∑
r′ 6=r

Ni∑
i′ 6=i

sr,d,c(i)sr′,d,c(i′)

(15)

The results of performing the variance and covariance
computations on our experimental data are shown in table II.

B. Hypothesis Tests

The structure of our experiments naturally admits the use of
t-tests under the assumption that the mean differences between
displays are normally distributed in each condition. Since we
are interested in determining the relative performance of the
two displays we will test both for difference and equivalence.
The difference test will use the standard paired t-test for
difference of means while the equivalence of means test will
be made using the two-one-sided-test (TOST).

Both of these tests rely on the computation of confidence
intervals for the difference of the means. Based on our data,
the 95% confidence interval’s upper and lower bounds are
computed as

CI± = P̂c ±
√

Vdv,c + Vdu,c − 2Vc√
NrNi

T0.975(NrNi − 1) , (16)

where T0.975(NrNi − 1) is the 0.975th quantile of Student’s t
distribution with NrNi − 1 degrees of freedom. The resulting
confidence intervals are given in table III along with the
relevant values of the t statistic for each test.
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TABLE III
t-VALUES AND 95% CONFIDENCE INTERVALS OF MEAN DIFFERENCE

PERCENTAGE CORRECT VALUES

t(NrNi − 1) CI− CI+

b = 1
20

, σ = 3
40

-8.16 −2.51× 10−2 −1.54× 10−2

b = 1
12

, σ = 3
40

-0.68 −0.71× 10−2 0.35× 10−2

b = 1
12

, σ = 9
200

-17.85 −5.31× 10−2 −4.25× 10−2

b = 5
36

, σ = 9
200

3.76 0.18× 10−2 0.56× 10−2

Using the derived confidence intervals, the test for differ-
ence simply asks whether the value 0 falls within the 95%
confidence interval (we could alternatively compute p-values
from the reported t-values against the t distribution with
NrNi − 1 degrees of freedom). If not, then we can reject the
hypothesis that the two displays are the same since the p-value
of the hypothesis is less than 0.05. Referring to table III we see
that in three of our four conditions we can reject the hypothesis
that the displays are the same, but we do not consistently prefer
one to the other across all conditions. Instead, there appears to
be a slight preference for the spatially varying display when
presenting images with high target SNR and a preference for
the uniform backlight display in images with low target SNR.

The TOST suggests that we define some bound on the
difference between displays inside of which we will declare
them equal for practical purposes. Standard approaches to
choosing this include appeals to domain specific knowledge
of the field being tested or accepting an error of less than
10% (some authors prefer 20%) of the mean of the reference
condition (in our case the uniform backlight) [15], [16]. Since
we have no domain specific knowledge for this test that allows
us to define meaningful bounds we will compute the 10%
bound for the four conditions from the uniform backlight mean
in table I. The resulting bounds are shown in table IV.

According to the 95% TOST with 10%-of-reference bounds,
we conclude that the means are equivalent if the confidence
95% confidence interval falls within the stated bounds [17].
There are additional methods for constructing symmetric con-
fidence intervals that may allow us to better fit inside the
agreed-upon bounds of equivalence [17]. However, consulting
tables III and IV, we can see that with our data the confidence
interval is already inside the equivalence bounds in all condi-
tions. Thus we can say that, with 10%-of-reference bounds of
equivalence, the displays are equivalent.

In fact, we can conclude that they are equivalent with
substantially tighter symmetric bounds in some conditions.
Based on the TOST methodology it is clear that the smallest
symmetric bounds of equivalence that are acceptable are
the range symmetric around zero that contain the complete
confidence interval. Any definition of practical equivalence
that uses a wider symmetric bound than this will similarly
be accepted given our data while any that is more restrictive
will fail. These narrowest symmetric bounds are listed in table
IV.

TABLE IV
EQUIVALENCE BOUNDS ON MEAN DIFFERENCE PERCENTAGE CORRECT

VALUES

10% Bounds Narrowest at 95%

b = 1
20

, σ = 3
40

±5.77× 10−2 ±2.51× 10−2

b = 1
12

, σ = 3
40

±6.23× 10−2 ±0.71× 10−2

b = 1
12

, σ = 9
200

±7.44× 10−2 ±5.31× 10−2

b = 5
36

, σ = 9
200

±9.26× 10−2 ±0.56× 10−2

C. Discussion

Based on the means and variances we computed, our t-
tests have demonstrated detectable differences in 3 of our
4 target/noise power conditions, although there was not one
consistent display preference across all conditions. However,
we have also been able to show equivalence given what is
normally considered a reasonable bound on the difference
in performance. In fact, as shown in table IV we could
use substantially stronger definitions of equivalence in most
conditions and still reach the same conclusion. That we have
shown both detectable difference and effective equivalence is
not a contradiction in our testing methodology. Instead this
result indicates that we had a sufficiently large study to detect
small differences, but that the differences we found were small
enough to be negligible.

Considering table III, there is a clear trend from small
differences in favour of the uniform backlight when in very
low target SNR images (top of table) to small differences in
favour of the spatially varying backlight when in very high
target SNR images (bottom of table). It is important consider
if this effect derives from either veiling luminance from scatter
in the eye or from the low resolution of the spatially varying
backlight. We suggest this cannot be the case, as these errors
should become more significant effects as the noise is reduced,
but we instead see the opposite trend in our data.

Instead, we suspect the trend in performance results from
the trade-offs in the algorithm used to produce the LED and
LCD images (see figure 3). The algorithm we used was an
experimental one that we had tuned specifically for MRI data.
However, we have noticed, based on qualitative evaluation,
that many of the experimental algorithms we considered have
a tendency to accentuate the thermal noise in the MRI images,
and we suspect our MRI-specific algorithm still has this
property, although to a lesser extent. It is important to note that
this accentuation is a result of the algorithm used to produce
the LED and LCD images and not the optics of the Dolby
display. As such, we expect that with further work on devel-
oping medical-imaging-specific LED/LCD image algorithms
this effect could be further reduced or completely nullified.

IV. CONCLUSION

We have presented a 2AFC SKE experiment for the ex-
ploration of the Dolby spatially varying backlight technology
in medical LCD displays. The use of real MRI data as
backgrounds ensured that our experiment used images with
realistic contrast and structure. Our targets and noise power
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were chosen to cover the full range of difficulties from
forcing users to essentially guess to making the task almost
obvious. By comparing using the same display with a spatially
uniform backlight as a simulation of a medical-grade LCD
we have minimized the number of possible confounds in our
experiment design.

The results of our experiment suggest that the detection
of small low-contrast features in complicated, high-contrast
backgrounds is possible on displays using the spatially varying
backlight. This result confirms our suspicion, based on the
years of clinical experience with film light boxes, that the
veiling luminance caused by scatter in the observers’ eyes
would not be a substantial impediment to signal detection.
Additionally, our results indicate that the use of the approxima-
tions introduced by the low-resolution LED backlight display
are not detrimental to signal detection in this context. More
generally, we suggest that the displays with the Dolby spatially
varying backlight system are useful platforms for further study
of high-contrast displays in medical imaging.

We see two significant areas of future work related to using
the Dolby display with spatially varying backlighting in a
medical context. First, our results suggest it is necessary to
reduce the noise-enhancing properties of the current LED/LCD
image-generation algorithms. Second, the development of a
method for DICOM calibration will be an essential prerequi-
site to performing further validation studies using real medical
data.

We also suggest that further experiments are needed to
verify that veiling luminance is not a substantial impediment
to detection, Despite the long-standing use of film light
boxes with brightness and contrast sufficient to induce veiling
luminance via scatter in the eye, we are still concerned that this
effect may play a role in hiding small, low-contrast lesions. To
thoroughly test this hypothesis detection experiments like this
one could be run with the low-contrast target being located in
regions calculated to be obscured by veiling glare based on a
model of the display and the veiling luminance effect [3].
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