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Abstract

Tone mapping operators are designed to reproduce visibility and
the overall impression of brightness, contrast and color of the real
world onto limited dynamic range displays and printers. Although
many tone mapping operators have been published in recent years,
no thorough psychophysical experiments have yet been undertaken
to compare such operators against the real scenes they are purport-
ing to depict. In this paper, we present the results of a series of
psychophysical experiments to validate six frequently used tone
mapping operators against linearly mapped High Dynamic Range
(HDR) scenes displayed on a novel HDR device. Individual oper-
ators address the tone mapping issue using a variety of approaches
and the goals of these techniques are often quite different from one
another. Therefore, the purpose of this investigation was not sim-
ply to determine which is the “best” algorithm, but more generally
to propose an experimental methodology to validate such operators
and to determine the participants’ impressions of the images pro-
duced compared to what is visible on a high contrast ratio display.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Display Algorithms; I.4.0 [Image Processing and
Computer Vision]: General—Image Displays
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1 Introduction

In the real world, our visual system is presented with a wide range
of colors and intensities. A surface lit by starlight might have a
luminance level of around 10−3 cd/m2, while daylight scenes are
close to 105 cd/m2. A well-designed CRT or LCD monitor, even
in a darkened room, is only able to achieve a maximum luminance
of around 150 cd/m2 and a contrast ratio of not more than two or-
ders of magnitude. In 1993, Tumblin and Rushmeier proposed a
framework to map real world luminances to target display lumi-
nances [Tumblin and Rushmeier 1993]. Such tone mapping op-
erators (TMOs) generate images visually similar to a real scene,
Figure 1, by carefully mapping to a set of luminances that can be
displayed on a low contrast ratio display or printed. These TMOs
are capable of enormous reductions in contrast to fit the displayable
range and manage to produce satisfying and visually appealing re-
sults. However, until now, there has not been a thorough evaluation
as to just how accurate the results of the TMOs are, compared with
the real scene they are intending to portray.
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Figure 1: Six tone mapped images which were compared to a ref-
erence scene (Scene 8) displayed on the HDR device.

2 Previous work

In 2003, Drago et al. [Drago et al. 2003b] asked subjects to make
preference judgements on how perceptually similar or dissimilar
tone mapped images were. They analyzed this data such that it
formed a stimulus space in which the coordinates in each dimen-
sion correlated to a stimulus describing differences between im-
ages. Based on these preference results, they determined a prefer-
ence point in the stimulus space which they then used as a reference.
This allowed them to determine what operators were perceptually
perceived as the most similar to this preference point. In 2004,
Kaung et al. [Kuang et al. 2004] ran a similar test where partici-
pants were required to judge different images again based on pref-
erence. More recently, Yoshida et al. [Yoshida et al. 2005] carried
out an experiment where they compared six algorithms to two real
scenes. They asked participants to rate images generated by the dif-
ferent operators in terms of how similar they appeared compared to
the actual scene. Although direct comparison with real scenes is
important, it can introduce uncontrolled variables.

All of these earlier studies were based on rating a series of tone
mapped images which, we believe, may not be the most appropriate
approach since it is very difficult to quantify such test scenes and
thus draw any conclusive results. This is discussed in more detail
in section 4.

The work described in this paper differs from the above in several
ways. Firstly, we undertake our validation of tone mapping opera-
tors by making comparison with a reference scene displayed on an
HDR monitor [Seetzen et al. 2003]. This is a novel approach and
eliminates many of the uncontrolled variables present in previous
studies. The HDR technology, which has previously been validated
against reality [Ledda et al. 2004a], allows us to make direct com-
parisons with many scenes of various stimuli which simplified the
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validation process because subjects had a specific reference when
making image judgements. Adopting the HDR display allows par-
ticipants to match a 2D reference image to a 2D tone mapped image
instead of comparisons with a 3D real scene. It has the advantage
of controlling screen resolution, dimensions, colorimetry, viewing
distance and ambient lighting.

Our methodology, which could also be valid for real scenes, is
based on paired comparisons where each subject is presented three
stimuli at any one time, the reference and two tone mapped images.
The closest image to the reference, depending on the experimental
condition being tested, is then chosen. This is a simpler task than
having to rate a series of images presented in one go. Previous work
had also the limitation that only a few scenes were considered and
a low number of participants actually took part in the experiments.
We conducted a study with 109 participants and 23 test scenes.

3 Tone Mapping Operators

Tone mapping operators can be classified into different categories
depending on how they attempt to reduce contrast in a HDR im-
age. Those models such as [Ward 1994; Schlick 1994; Tumblin
et al. 1999] that apply the same mapping function across the im-
age are known as global operators. These algorithms, although not
very computationally expensive, do not cope well with huge con-
trast ratios. Those operators in which the mapping varies spatially
depending on a neighborhood of a pixel are known as local. Lo-
cal operators, for example [Pattanaik et al. 1998; Tumblin and Turk
1999; Fattal et al. 2002], are generally capable of a greater contrast
reduction allowing significant compression of the dynamic range of
a scene. However, a major concern with spatially-varying operators
is that contrast reversals (or “halos”) artifacts can appear around
high contrast edges. In addition, some operators try to mimic the
human visual system adopting mapping functions that closely re-
semble aspects of human vision [Upstill 1985; Tumblin and Rush-
meier 1993; Larson et al. 1997; Pattanaik et al. 1998]. A few per-
ceptual operators [Ferwerda et al. 1996; Pattanaik et al. 2000; Du-
rand and Dorsey 2000; Ledda et al. 2004c], also model other effects
such as the time course of adaptation, loss of color and visual acuity
at different illumination levels. The aim is to produce images which
are even closer to what an observer would perceive in reality.

Below, we briefly introduce the six different algorithms that were
chosen for this investigation. The italic letters in brackets included
with each TMO description is the name we shall use to refer to
the operator in our results. Most of the images used for the valida-
tion were either generated from code kindly donated by the authors
or computed using available source code. We obviously understand
that some of the operators’ performance could be improved by mod-
ifying various parameters. Whenever possible, we attempted to use
their default settings as presented in the respective papers. A more
detailed discussion of these, and other TMOs, can be found in [De-
vlin et al. 2002].

Histogram Adjustment (H) [Larson et al. 1997]
The operator aims to produce images which preserve visibility
in HDR scenes. It also includes models of human contrast
sensitivity, color sensitivity, visual acuity and glare, producing
images which match the viewer’s experience of the real scene.

Bilateral Filter (B) [Durand and Dorsey 2002]
This local, detail-preserving operator attempts to display
HDR images by decomposition of the image into a base and
detail layer. In the base layer the contrast is compressed by an
edge-preserving filter known as the bilateral filter.

Photographic Reproduction (P) [Reinhard et al. 2002]
This operator simulates the dodging and burning technique

Figure 2: Experimental setup. In the center is the linearly mapped
reference image on the HDR display. Left and right are two tone
mapped images.

used in traditional photography allowing different exposures
across the image to be printed. We considered the more com-
plex local model rather than the simpler global version.

iCAM model (I) [Johnson and Fairchild 2003]
iCAM is an image appearance model which has been ex-
tended to render HDR images for display. iCAM attempts to
determine the perceptual response towards spatially complex
stimuli and can predict the appearance of HDR images.

Logarithmic Mapping (L) [Drago et al. 2003a]
This method reduces the contrast ratio by a logarithmic com-
pression of luminance values, imitating the human response
to light.

Local Eye Adaptation (A) [Ledda et al. 2004c]
This recent operator, similarly to [Pattanaik et al. 2000], com-
putes the eye’s retinal response to luminance however in this
case, the process is entirely localized allowing for a good dy-
namic range compression.

4 Experimental Framework

Due to the nature of the experiment and task we opted to avoid
methods, used in earlier studies, such as rating or ranking. Our ap-
proach, on the other hand, was to present each subject with a pair of
tone mapped images in addition to the reference image on the HDR
display (in the center), as illustrated in Figure 2. Participants were
then required to indicate a preference, based on a specific prop-
erty being tested, for one of the two images compared to the refer-
ence. This technique is known as paired comparisons. Rating or
ranking all of the images would, in this case, be an unnatural task
for the observer leading to distorted results [Siegel and Castellan
1988]. The validity and reliability of rating data are problematic to
establish without very large numbers of trials and participants and
if subjects have not been trained, prior to the trial, on a series of
test images [Kendall 1975]. Additionally, rating data are subject
to drift effects, leading to likely order effects given relatively small
numbers of presentations. Given this, one can argue that ranking
may be more appropriate. In ranking a number of test images are
arranged in order according to some quality which they all possess
to a varying degree. Ranking may be regarded as a less accurate
method of expressing ordered relationship of test images (and indi-
rectly tone mapping algorithms) since it does not tell us how close
the various images may be to each other. On the other hand, rank-
ings are invariant under stretching: what ranking loses in accuracy
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tmo1 tmo2 tmo3 tmo4 tmo5 tmo6 Score
tmo1 - 1 0 0 1 1 3
tmo2 0 - 0 1 1 0 2
tmo3 1 1 - 1 1 1 5
tmo4 1 0 0 - 0 0 1
tmo5 0 0 0 1 - 1 2
tmo6 0 1 0 1 0 - 2

Table 1: Example preference matrix for one subject when shown
six tone mapped images of a given scene. Each tone mapped image
in a row, tmoi is compared with another tmo j in each column.

it gains in generality for when we stretch the scale of measurement
the ranking remains unaltered [Kendall 1975]. Ranking a series
of images, however, is still a complicated task for participants, es-
pecially when they are simply asked to rank the TMOs in order of
overall similarity to the reference, as the participants’ judgment will
very likely be based on different factors.

The advantage of our approach is not only simplicity, since sub-
jects only have to make straightforward judgments, but it also al-
lows an evaluation of the transitivity, that is, the within-subject
consistency of the data, as well as the between-subject consistency.
This will be discussed in more detail in section 4.2.2. All the exper-
iments described in this paper were carried out using this method
and, as will be shown in the following sections, it was a reliable and
useful technique.

For clarity, from now on, we will use the term Scene to refer to
the different images displayed on the HDR display. In our experi-
ment we had 23 scenes and a total of 138 different images (6 tone
mapped images per scene).

4.1 Experimental Design

We conducted what is known as a balanced design paired compar-
ison test, where each subject was instructed to evaluate all possible
comparison pairs taken from the test set. Although this means the
trial is large and time consuming, it makes it easier to evaluate and
compare the performance of each test subject.

Let us suppose that t is the number of tone mapping operators
that we wish to compare against each other and the reference HDR
scene (in our case 6). For a given scene, each subject is presented
(t

2
)

= 15 pairs ((t(t − 1)/2), all possible combinations of TMOs.
For each pair, the subject’s “vote” is recorded. Once all of the pairs
have been presented, we may record the results in a t × t matrix.

As an example, consider the results shown in table 1. The cell in
column tmo2 and row tmo3 has a value of 1 signifying that the sub-
ject considered the image generated with tmo3 to be more similar
to the reference than the image generated with tmo2. We may also
write this as tmo3 → tmo2. From Table 1 we also see that tmo1 is
considered more similar to the reference than tmo2, tmo5 and tmo6
giving an overall score of 3. If we denote pi as the number of pref-
erences scored by tmoi (i = 1,2..t), then the overall score per scene
per subject is:

t

∑
i=1

pi =
t(t −1)

2
= 15 (1)

The votes for all s subjects performing the task are then com-
bined into a single preference matrix per scene. If all of the sub-
jects completely agreed in their paired comparisons, then t(t−1)/2
cells would have a value of s and the remaining cells would have 0.
Note that the central diagonal is never considered since we do not
compare the same image against itself.

4.2 Statistical Analysis

4.2.1 Kendall Coefficient of Agreement

As just described, there will be a complete agreement if all subjects
vote the same way. Suppose that pi j is the number of times that
tmoi is preferred to tmo j . Now, let

Σ = ∑
i 6= j

(

pi j

2

)

(2)

the summation extending over t(t −1) terms (excluding the diago-
nal), where, as above, t is the numbers of TMOs. Σ is the sum of
the number of agreements between pairs. Kendall and Babington-
Smith [Kendall and Babington-Smith 1940] have proposed a coef-
ficient of agreement among the subjects defined as:

u =
2Σ

(s
2
)(t

2
) −1 (3)

where, s is the number of subjects. As with other correlation meth-
ods, u will be equal to 1 if all s subjects made identical choices
during the test. The smaller the agreement between subjects, the
smaller u will become. The minimum value that u can assume when
the scores are evenly distributed across the matrix, is −1/(s− 1)
when the number of subjects is even or −1/s when s is odd. There-
fore, for each scene we can compute the coefficient of agreement
which will give us a good indication about the similarity of votes
between subjects. Paired comparison data is often analysed us-
ing Thurstone’s Law of Comaparative Judgments [Thurstone 1927].
Thurstone’s method would be appropriate if one would assume that
there exist perceptible differences between the TMO’s presented for
comparison. Kendal coefficient of agreement makes it possible to
dispense with such assumptions and precautions.

4.2.2 Coefficient of Consistency

One important aspect to consider when carrying out paired com-
parisons is consistency or transitivity. If, when evaluating three
objects (TMOs in our case) A, B and C for example, an observer
expresses his/her judgment as A → B (the arrow means A is closer
to the reference than B), B → C and A → C we define the vote as
consistent. On the other hand if the observer makes an inconsistent
choice such as C → A then we call the triad circular and say that
the pair comparison is intransitive.

Although inconsistency is not ideal, it can frequently happen, es-
pecially in cases, such as ours, where a typical ranking approach is
problematic. Inconsistency does not necessarily mean that the data
are erroneous. On the contrary, it can provide the tester with very
useful information about the experiment. If, on average, most of the
participants are inconsistent, we can conclude that the tone mapped
images being evaluated are very similar and thus it is difficult to
make consistent judgements. (ranking or rating would not consider
this). On the other hand, if the inconsistencies are present in only a
small proportion of participants, then we can conclude that they are
not capable of making a consistent judgment and we have greater
justification for not including their scores. In this study, however, no
scores had been discarded as the vast majority of participants were
consistent in their judgments. We may define a coefficient of con-
sistency ζ by the equation [Kendall and Babington-Smith 1940]:

ζ = 1− 24c
t3 −4t

(4)

where c is the number of circular triads observed per participant per
test scene. If ζ is 1, then there are no circular triads, the data in this
case could be ranked. The number of circular triads is determined
as follows [David 1969]:
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c =
t

24
(t2 −1)− 1

2
T (5)

where T = ∑(pi − (t −1)/2)2.
For an even t, the maximum number of circular triads is 1

24 (t3 −
4t). The coefficient ζ will move to zero as the number of circular
triads, and thus the inconsistencies, increases.

Having computed the coefficient of agreement u and consistency
ζ for each subject it is important to test the significance values by
considering the distribution they would have if all the preferences
had been chosen at random. Details of these tests can be found in
the Appendix.

5 The Study

We conducted two separate experiments. In the first experiment, the
subjects were asked to select which image was overall the most like
the reference image, while in the second experiment, participants
were asked to make their judgment based on detail reproduction.

The selection of a suitable set of test scenes is crucial to this
investigation, because the TMO performance might be scene de-
pendent. One key issue in earlier studies by [Drago et al. 2003b;
Ledda et al. 2004b; Kuang et al. 2004; Yoshida et al. 2005] was the
limited number of test scenes, between 2 and 8, which might have
missed correlation with scene content. We chose to use a larger test
set of 23 scenes from a variety of categories, day, night, indoor and
rendered. In addition, the scenes contained a variety of different
dynamic ranges, all of which were within the limits of the HDR
display. The scenes used are all shown in Figure 6. We shall call
the scenes Scene 1, Scene 2, . . . , Scene 23.

5.1 Method

Each scene was tone mapped with the six algorithms and each pos-
sible pair combination for a scene shown to the participants. For
six TMOs this was a total of 15 images per scene. On every oc-
casion the participant saw three images: in the center the reference
scene displayed on the HDR display and to the left and right the
tone mapped versions of the reference generated with different op-
erators.

The tone mapped images were displayed on two 15” Viglen LCD
monitors which had been calibrated. The resolution of the two
LCDs and HDR display was 1024 × 768 at 60 Hz which is the
upper limit of the HDR device used. Both LCDs and HDR dis-
play were measured in a dark room with a Minolta CS-100A pho-
tometer. The readings were taken by displaying respectively a pure
white and black image at full screen. The measurements, made
at a 0◦ angle, were taken in five regions and averaged. These are
the readings that we obtained: LCD Max Lum=87.3 cd/m2, Min
Lum=0.65 cd/m2 (very similar for both displays). Therefore con-
trast ratio of approx 135:1. For the HDR display, we measured the
following: Max=2600 cd/m2 and Min=0.04, contrast=65,000:1

The viewing angle of the HDR display is around 40◦ horizontal
and 15◦ vertical, which is very small compared to the 160◦ hor-
izontal and 120◦ vertical of the LCD displays. We ensured that
each participant’s eyes were aligned with the centre of the HDR
screen, which was easily achieved by adjusting the height of the
chair they were sitting on. The viewing distance was 80 cm. The
adjacent displays were positioned at the exact same height and dis-
tance but slightly rotated, around the vertical axis. To observe the
tone mapped images on these displays, they simply rotated their
head enough to form a 90◦ angle between viewing direction and
screen. All of the screens were behind a dark gray mask.

The experiment was conducted in a dark room to avoid any ef-
fects of ambient lighting. We allowed each participant to adjust to

P H B L I A Total
P - 24 46 42 10 32 154
H 24 - 44 32 8 12 120
B 2 4 - 8 2 4 20
L 6 16 40 - 4 12 78
I 38 40 46 44 - 38 206
A 16 36 44 36 10 - 142

Table 2: Preference matrix for Scene 8.

the environment for 5 minutes before commencing the actual exper-
iment. Presentation order and location were randomized in order to
remove any order effects. The maximum time allowed to make a
choice between the two tone mapped images was 13 seconds which
was decided after a pilot study. It is important to allow the same
amount of time for each participant and it should be long enough
for the participant to make an informed choice without analyzing
every single detail in the image. The total number of participants
for the entire study (Experiments 1 and 2) was 109, 44 female and
65 male. All of the participants were between 20 and 34 years old
and had normal or corrected to normal vision. The participants had
taken at one computer graphics course and, therefore, had a clear
understanding of their task. No subject took part in more than one
experiment.

5.2 Experiment 1: Overall Similarity

In Experiment 1, each participant was presented with all of the
scenes, thus looking at a total of 15× 23 = 345 image pairs. Be-
cause of the large amount of data, we split each participant’s exper-
iment in three sessions of 30 minutes reducing the risk of observers
getting tired or bored. Participants were asked to make judgements
of the TMOs based on overall similarity. For each pair, participants
were instructed to observe the two tone mapped images and select
the one they believed was the most similar to the reference HDR
scene. This was deliberately a vague task. We wanted to investi-
gate whether the outcome would be somewhat random, indicating
that various attributes such as color, contrast or detail cancel each
other out or if, even in this generic situation, some consistency in
the data would be noticed. 48 subjects took part in this 90 minute
experiment.

5.3 Experiment 1: Results

The detailed nature of this study has, of course, resulted in a signif-
icant amount of data. To illustrate our methodology and statistical
analysis, we will discuss in detail the results for one scene, Scene
8. The overall comparison results for the 23 scenes are shown in
Table 3. We have also used colors for each of the TMOs to make
it easier to discern patterns in the data. The complete data set, in-
cluding all multiple comparison scores, will be made available on a
website.

The outcome of the paired comparison data from the 48 subjects
was tabulated in a preference matrix. The preference matrix for
Scene 8 is shown in Table 2. The numbers in each cell represent the
number of times that a specific tone mapped image was regarded
as being closer, in overall similarity, to the reference. For example,
the fourth cell in the first row is 42 indicating that algorithm P was
judged 42 times out of 48 closer to the reference than algorithm L
(Note that L, row four, thus has the value of 48-42=6).

Prior to preparing the preference matrix, each participant’s re-
sults were analyzed for consistency using Equation 4. For the
case presented in Table 2, the average coefficient of consistency
ζ = 0.842 which, given degrees of freedom and p value, is high
and statistically significant. A high value of ζ indicates that the
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Coeff Agr u Coeff Cons (ave) ζ χ2 significance p, 15 df 1st 2nd 3rd 4th 5th 6th
Scene 1 0.050 0.533 50.0 < 0.1 P B A H I L
Scene 2 0.214 0.692 166.0 < 0.001 I P H A B L
Scene 3 0.254 0.817 194.0 < 0.001 P I A H L B
Scene 4 0.172 0.767 136.0 < 0.001 P L I A H B
Scene 5 0.523 0.933 384.0 < 0.001 I H A P L B
Scene 6 0.429 0.892 317.6 < 0.001 I H A P L B
Scene 7 0.189 0.692 148.0 < 0.001 I A P H B L
Scene 8 0.429 0.842 317.6 < 0.001 I P A H L B
Scene 9 0.062 0.650 58.6 < 0.05 P A L H B I
Scene 10 0.112 0.725 94.0 < 0.05 I P H A B L
Scene 11 0.228 0.775 175.6 < 0.001 I A H P B L
Scene 12 0.337 0.858 252.6 < 0.001 I P H A L B
Scene 13 0.081 0.642 72.0 < 0.001 P I H A L B
Scene 14 0.314 0.979 236.3 < 0.001 I P A H L B
Scene 15 0.074 0.617 67.3 < 0.05 H P I A L B
Scene 16 0.310 0.850 233.3 < 0.001 H P I A B L
Scene 17 0.241 0.850 184.6 < 0.001 I H P A B L
Scene 18 0.220 0.875 170.0 < 0.001 P A H I L B
Scene 19 0.148 0.725 119.3 < 0.001 I H A P B L
Scene 20 0.182 0.658 143.0 < 0.001 P I A B L H
Scene 21 0.138 0.717 112.3 < 0.001 P H A I B L
Scene 22 0.107 0.575 90.6 < 0.05 P I A H B L
Scene 23 0.282 0.808 214.0 < 0.001 P A H I L B

Table 3: Overall Similarity results for Color images.

Coeff Agr u Coeff Cons (ave) ζ χ2 significance p, 15 df 1st 2nd 3rd 4th 5th 6th
Scene 3 0.352 0.789 57.2 < 0.001 P I A B H L
Scene 4 0.338 0.933 55.5 < 0.001 P L A H I B
Scene 7 0.184 0.911 37.1 < 0.001 I A H P B L
Scene 8 0.310 0.889 52.2 < 0.001 I P A H L B
Scene 11 0.177 0.689 36.3 < 0.001 I A H P L B
Scene 13 0.380 0.767 60.5 < 0.001 I P A L H B
Scene 14 0.498 0.956 74.8 < 0.001 I P A L H B
Scene 16 0.359 0.844 58.0 < 0.001 H I P A L B
Scene 18 0.400 0.822 63.1 < 0.001 P L H A I B
Scene 21 0.066 0.756 22.9 < 0.001 P H A B L I
Scene 23 0.428 0.889 66.4 < 0.001 P H L A I B

Table 4: Overall Similarity results for Greyscale images.

TMOs, at least for this scene, could be indirectly ranked. Hav-
ing established good consistency in the data, we compute, using
Equation 3, the coefficient of agreement u amongst subjects. For
Scene 8, u = 0.429. Complete agreement would exist if half of the
cells in Table 2 contained 48 and the remaining 0; the data, how-
ever, could still be inconsistent. The significance test, as described
in the Appendix, shows that we may reject the null hypothesis H0
at α = 0.05 level for

(6
2
)

= 15 degrees of freedom (d f ) and we
can thus conclude that there is some agreement amongst observers
when comparing the different tone mapped images to the reference.
This implies that there is indeed a perceptual difference between the
TMOs, unfortunately it does not tell us where these differences lie.
This is the equivalent problem of running an ANOVA test, where
usually post-hoc tests need to be conducted to compare each test
object against each other. The same concept applies here. Signif-
icance test of the score differences need to be performed in order
to determine whether the perceptual quality of any two algorithms
from the test set is perceived as different. Otherwise, we have to
conclude that the perceived quality of the two operators is simi-
lar. From the multiple comparison score test, described in the Ap-
pendix, we can test the score of each operator against the others.

I               P             A             H              L              B

206            154         142         120            78             20

Overall Similarity: Scene 8

Figure 3: Multiple comparison score for Scene 8. Any TMOs
whose scores are underlined are considered perceptually similar to
the reference. So, for example, P is perceptually similar to A, but
not to any of the others.

For t = 6 algorithms, 15 comparisons are made. One method to
represent such results is as shown in Figure 3 where any TMOs
that are underlined by the same line may be considered perceptu-
ally indistinguishable. This procedure needs to be repeated for all
23 scenes. There is no succinct way to show the results from the
multiple comparisons scores.

Table 3 contains the complete results for the overall similarity
experiment. For each scene, the table shows the values of u, aver-
age ζ , significance p and the TMO ranking. From these results it is
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reasonably clear that, on average, TMO I followed by P were con-
sidered the closest to the reference scene in overall similarity. The
ranking is very similar across the 23 scenes. We can also see that B
and L did not perform as well. Although the task was intentionally
vague, the outcome was consistent and the results are in the vast
majority of cases statistically significant.

Figure 4 illustrates the multiple comparison score results when
all of the scores from the 23 different scenes were added together.
Apart from H and A, which can thus be considered perceptually
similar, there is a strong statistically significant difference between
the other TMOs and thus these TMOs can clearly be ranked.

I               P             H             A              L              B

3712        3402        2994       2852         1902        1696

Overall Similarity: Color

Figure 4: Comparison of the scores across all 23 scenes.

5.4 Overall Similarity: Grayscale Images

Following the first experiment, we conducted another experiment
with s = 18 subjects and a random subset of 11 of the 23 scenes,
where the task was identical as previously, however, on this occa-
sion, the images presented were grayscale. These images were gen-
erated from the luminance channel of the color images. We wanted
to verify if color played a significant role when comparing the var-
ious algorithms. The results for this experiment are presented in
Table 4. On the whole the outcome had a similar trend although
the significance between the individual algorithms was smaller. In
particular we noticed that in this experiment P performed slightly
better (although not significantly) than I. This reversal of rank could
be explained by the fact that the I algorithm is a fairly sophisticated
color appearance model. Therefore, when color is present, the tone
mapped image generated preserves the color information closer to
the reference than other algorithms such as P. On average, however,
the scores between the color and grayscale experiments are compa-
rable indicating that color has no significant effect on the overall
ranking of the TMOs.

5.5 Experiment 2: Detail Reproduction

The results of Experiment 1 showed that there was a strong and
consistent agreement between subjects. In a second experiment we
wanted to investigate, if when the focus on the image was more
specifically on the visibility and reproduction of detail, whether the
outcome would be analogous. Most tone mapping operators aim to
reproduce the maximum amount of detail in the scene sacrificing
contrast at times. Humans, on the other hand, may make assess-
ments of scenes mainly based on contrast and color and therefore,
we would expect a different outcome when isolating detail as the
attribute to judge. Local TMOs, although theoretically capable of
better detail reproduction, tend to suffer in terms of contrast when
compared to spatially-uniform algorithms. We conducted two sub-
experiments with 48 participants. In the first part of Experiment 2,
using the same methodology of paired comparisons, participants
were required to assess images based on reproduction of detail in
the bright regions of the images. In the second, the task was to
assess the tone mapped images based on reproduction of detail in
the dark regions. The purpose of this experiment was to ensure that
TMOs which generate too much detail should be considered as poor
as those which do not reproduce enough detail.

5.6 Experiment 2: Bright Regions Results

Table 5 shows the results for the reproduction of detail in bright
regions. We can immediately notice that although the ranking for
the first two positions are fairly obvious, the remaining positions
are not. More specifically we can see that the P algorithm, which
performed very well in both overall similarity experiments, does
not perform well when considering the reproduction of detail in
brighter regions of the scenes. Not surprisingly L, being a spatially-
uniform model, performed on average the worse followed by H.
TMO B, which perhaps surprisingly performed poorly in the pre-
vious experiment, does much better here. As in Experiment 1, al-
though the overall results for each scene are statistically significant,
the score differences between individual algorithms might not be.
On average, however, we observed statistically significant differ-
ences between operators ranked more than one position apart.

5.7 Experiment 2: Dark Regions Results

Table 6 shows the results of the reproduction of detail in dark re-
gions experiment. Unlike the bright detail experiment, there is an
improvement in performance of TMO P. As with bright regions, on
average A obtained high scores and was typically ranked in the first
two positions. The B algorithm was in most cases ranked the worst.

6 Conclusion

The overall results of our investigation are summarized in Figure 5.
The values represent the sum across all subjects and test scenes.
Each algorithm was then tested against each other to verify whether
they belonged to the same perceptual group or, if indeed one was
perceived to be closer to the reference than the other.

In the first experiment we asked subjects to observe pairs of tone
mapped images and choose the one which appeared closer to the
reference in overall similarity. Given the purposefully inexact def-
inition of the task, leaving participants to set their own judgement
criteria, it is surprising how well participants agreed. Furthermore,
the value of ζ was high enough to conclude that the task of in-
directly ranking the algorithms was possible (average coefficient of
consistence ζave ≈ 0.7). From this first experiment we can conclude
that the iCAM (I) and Photographic (P) operators consistently per-
formed very well. When the same experiment was conducted with
grayscale scenes (ζave ≈ 0.7), the outcome was similar, although
we noticed that on average P performed slightly better than I. We
might explain this by the fact that the iCAM is a good color appear-
ance model and when participants observe the images as a whole,
color plays a role. When color was absent, participants used other
attributes such as contrast to assess the images, in this case I’s per-
formance suffered slightly. For the other operators color did not
have a major impact in assessing image quality.

In the second experiment, the reproduction of features and detail
was tested. Firstly, from Tables 5 and 6, we can see that the av-
erage consistency for each scene was higher than when the overall
comparisons were made (ζave ≈ 0.9 both bright and dark experi-
ments); even the overall agreement u was much higher. This is not
surprising since the task was more specific, allowing less freedom
in judgements. As it can be seen from Table 5 and Figure 5, when
the bright details were tested, the iCAM I model scored higher than
the others followed by the local adaptation model A, while the per-
formance of the photographic P algorithm was not as good as in
previous experiments. In this case the bilateral filter B algorithm
performs slightly better although surprisingly low once more. In
the dark detail experiment A again achieved a high score indicating
that this algorithm is capable of accurate detail reproduction at the
expense of lower contrast, which was confirmed from the overall
similarity experiments.
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Coeff Agr u Coeff Cons (ave) ζ χ2 significance p, 15 df 1st 2nd 3rd 4th 5th 6th
Scene 4 0.115 0.661 52.8 < 0.02 H A I P B L
Scene 7 0.295 0.878 112.3 < 0.001 I A B H P L
Scene 11 0.275 0.765 105.7 < 0.001 I A B H P L
Scene 12 0.302 0.861 114.7 < 0.001 I A P B L H
Scene 13 0.214 0.783 85.5 < 0.001 L A P I B H
Scene 14 0.331 0.887 124.1 < 0.001 I B A L H P
Scene 16 0.311 0.904 117.5 < 0.001 H P I B A L
Scene 18 0.381 0.870 140.8 < 0.001 I A H P L B
Scene 21 0.351 0.878 130.7 < 0.001 I A P B H L
Scene 22 0.274 0.791 105.3 < 0.05 I P B A H L

Table 5: Results of the Reproduction of Detail in Bright regions experiment.

Coeff Agr u Coeff Cons (ave) ζ χ2 significance p, 15 df 1st 2nd 3rd 4th 5th 6th
Scene 4 0.444 0.9 141.4 < 0.001 P A L B I H
Scene 7 0.434 0.89 138.8 < 0.001 A P I H L B
Scene 11 0.233 0.89 81.4 < 0.001 A P L H I B
Scene 12 0.382 0.9 123.8 < 0.001 I P A L H B
Scene 13 0.255 0.86 87.8 < 0.001 H I A P L B
Scene 14 0.341 0.93 112.2 < 0.001 I P H A L B
Scene 16 0.258 0.89 88.4 < 0.001 A I P H L B
Scene 18 0.291 0.88 97.8 < 0.001 P A L H I B
Scene 21 0.232 0.88 81.0 < 0.001 A P L B H I
Scene 22 0.300 0.85 100.4 < 0.001 P A L I B H

Table 6: Results of the Reproduction of Detail in Dark regions experiment.

I             P           H           A            L            B

3712      3402      2994      2852      1902      1696

Overall Similarity: Color

P          I           A         H          L         B

686      602      564      514      368      232

Overall Similarity: Greyscale

I          A          P         H         B          L

823      688      569      549      474      347

Bright Detail

P          A          I         L          H        B

815      793      583     491      485     283

Dark Detail

Figure 5: Summary of the entire investigation. Any two TMOs
whose scores are underlined are considered perceptually similar.

From our results it appears that the iCAM I model generally per-
forms better than other algorithms when participants are asked to
make simple comparisons with the ideal reference image. Color is
probably a major factor here as when grayscale images were pre-
sented to participants, the photographic P model performed better.
This possibly signifies that P has a very good contrast appearance
whereas I, although still good in contrast reproduction, has the ad-
vantage of a better color model. When the more specific attributes
of details were examined, we noticed a different trend. The local
eye adaptation model A generally can be considered the algorithm
which best preserves details. Overall the histogram H operator had
a quite good performance especially considering that it is a global
model. Less impressive was the logarithmic mapping operator L,
although it is capable of good detail reproduction in dark regions.
Surprisingly, the bilateral algorithm B performed very poorly, the
images generated by this TMO tend to have very high contrast and
detail, even more than the reference image, which explains the poor
score. However, when the images generated by this algorithm are
viewed without a reference, subjects tend to prefer these images
compared to other algorithms. This was also reported in [Kuang
et al. 2004]. Finally, from our results, we did not find any correla-
tion between tone mapping operators and test scenes.

Future work will evaluate further TMOs using not only the

methodology we have proposed, but also other approaches includ-
ing the use of eye-tracking to compare how participants observe the
different scenes. This may aid us in comprehending the reasons
behind our results. The knowledge gained from these results will
be used to develop a new tone mapping operator for traditional dis-
plays providing the best scene preservation of all attributes includ-
ing contrast, color and detail. In addition, tone mapping operators
will also be developed for HDR displays.
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Appendix

To test the significance of the coefficient of agreement u, we may
test the null hypothesis H0 that there is no agreement amongst the
subjects and the alternative hypothesis H1 that the degree of agree-
ment is greater than if the evaluation of the comparisons had been
done randomly. To determine the significance of u we may use the
large sample approximation to the sampling distribution. The chi-
squared (χ2) test statistics is [Siegel 1998]:

χ2 =
t(t −1)(1+u(s−1))

2
(6)

which is asymptotically distributed as χ2 with t(t−1)/2 degrees
of freedom. We can determine whether the values we obtained were
statistically significant from tables of probability value for χ2 as
given in [Siegel 1998](Table C, page 323). Note that a high agree-
ment u between subjects does not necessarily imply a high consis-
tency ζ . It is possible that all the judges agree and at the same time
are completely inconsistent.

If u is statistically significant then we can say that there are dif-
ferences between the operators although we do not know where
these differences lie. Significance test of the score differences is
performed in order to see whether the perceptual quality of any two
algorithms from the test set is perceived as different. Otherwise, we
may have to conclude that the perceived quality of the two operators
is similar. In other words, we want to find R′ such that the proba-
bility P(R ≥ R′)is less or equal to the significance level α (usually
α=0.05). We declare the TMOs within each group (scores differ-
ence < R) to be not significantly different, while those from differ-
ent perceptual groups are declared to be significantly different. The
distribution of the range R is asymptotically the same as the distri-
bution of variance-normalized range, Wt , of a set of normal random
variables with variance = 1 and t samples [David 1969]. Therefore,
we can use the following relation:

P
(

Wt ≥
2R−1/2√

st

)

(7)

where Wt,α is the value of the upper percentage point of Wt at sig-
nificance point α . The values of Wt,α can be obtained from statistics
books for example [Pearson and Hartley 1988]. Once the value of
Wt,α is determined, we can solve for R′:

R′ =
1
2

Wt,α
√

st +
1
4

(8)

If the score difference for a given scene between two TMOs is
larger than R+ (the smallest integer greater than R′), then we can
conclude that there is a statistically significant difference between
the two operators indicating that one is closer to the ideal reference
image than the other.
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Scene 1 Scene 2 Scene 3 Scene 4 Scene 5

Scene 6 Scene 7 Scene 8 Scene 9 Scene 10

Scene 11 Scene 12 Scene 13 Scene 14 Scene 15

Scene 16 Scene 17 Scene 18 Scene 19

Scene 20 Scene 21 Scene 22 Scene 23

Figure 6: The data set of 23 Scenes. Scene 1 and 2 by Karol Myszkowski. Scene 3, 5 and 21 by Dani Lischinski . Scene 4, 6, 7, 8, 11, 14, 16,
18, 19 and 22 Greg Ward. Scene 10 by Garrett Johnson. Scene 12 and 23 by Industrial Light and Magic. Scene 13 by Jack Tumblin. Scene
15 by Simon Crone. Scene 17 by Veronica Sundstedt.
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